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Abstract
In a paper by Verberg et al (2002 Dynamics: Models and Kinetic Methods
for Non-Equilibrium Many Body Systems ed J Karkheck (Dordrecht: Kluwer))
it was shown that the static structure factor S(k) of a hard-sphere fluid plays
an important role in the computation of the transport properties of colloidal
suspensions. To perform actual calculations, those authors used a semiempirical
form due to Grundke and Henderson which stems out of the Percus–Yevick
approximation. In this work we present calculations of the static structure
factor of a hard-sphere fluid within the rational function approximation method
(Bravo Yuste et al 1996 Phys. Rev. E 53 4820) which is wholly compatible
with the equation of state used for the fluid. The Carnahan–Starling equation
of state (Carnahan and Starling 1969 J. Chem. Phys. 51 635), the Padé (4,
3) of van Rensburg (1993 J. Phys. A: Math. Gen. 26 4805) and Sánchez
(1994 J. Chem. Phys. 101 7003), the equation of state of Malijevský and Veverka
(1999 Phys. Chem. Chem. Phys. 1 4267) and a recent proposal by us (Robles
and López de Haro 2003 Europhys. Lett. 62 56) will be explicitly examined.

1. Introduction

The two basic quantities employed to study the structure of a fluid in equilibrium are the
radial distribution function (RDF) g(r) and its close relative the (static) structure factor
S(k) = 1 + ρ

∫
dr e−ik·r[g(r) − 1], where ρ is the density. The importance of g(r) and

S(k) is also due to the fact that, given the interparticle potential, their knowledge as functions
of density and temperature allows one to derive the equation of state using either of the two
well established statistical mechanical virial or compressibility routes [8]. Furthermore, these
equilibrium structural quantities also appear in theoretical formulae of transport coefficients,
for instance those of the Enskog kinetic theory [9] or of colloidal suspensions [1].

The commonest approaches to determine g(r) are through the use of one of the integral
equation theories of liquids or through computer simulation. And it is only in the case of
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hard spheres and in the so-called Percus–Yevick (PY) approximation that an exact analytical
solution has been found [10, 11]. In general, integral equation theories require hard numerical
work as well as closure approximations, and they lead to different equations of state if one takes
the virial or the compressibility routes (thermodynamic inconsistency problem). As a matter
of fact, the PY solution for the hard-sphere fluid also presents this problem, and so Verlet
and Weis [12] added an empirical correction term to the PY g(r) in which the parameters
were adjusted so that the resulting equation of state taking either of the two thermodynamic
routes coincides with the expression proposed by Carnahan and Starling (CS) [3]. The S(k) that
follows from the Verlet and Weis proposal was obtained by Grundke and Henderson (GH) [13].

A few years ago, an alternative (algebraic) approach [2, 16, 17] to the integral equation
theories of liquids was introduced to obtain the structural properties of hard-sphere fluids and
their mixtures. Apart from its relative simplicity, this approach—referred to as the rational
function approximation (RFA) method—completely avoids the thermodynamic inconsistency
problem, in that the compressibility factor is involved in the derivation of both g(r) and S(k),
and the results are then thermodynamically compatible by construction. The major aim of the
present work is to assess the effect of considering different equations of state proposed in the
literature for a hard-sphere fluid on the actual values of the static structure factor as a function
of the density computed using the RFA approach.

The presentation is organized as follows. In order to make it self-contained, in the next
section we provide a brief outline of the derivation of the analytical formulae for g(r) and S(k) in
the RFA method. This is followed by the actual results for the static structure factor as a function
of density using four different equations of state, and a comparison of the corresponding results
with those obtained with the GH expression. We close this work with some further discussion
and concluding remarks.

1.1. The RFA method

In the PY approximation, Wertheim [10] has shown that for a hard-sphere (HS) fluid the
Laplace transform of r

σ
gHS(

r
σ
) has an exact solution of the form

G(t) = L
[ r

σ
gHS

( r

σ

)]
= t

12η

1

1 − et�(t)
, (1)

where η = π
6 ρσ 3 is the packing fraction of the spheres (ρ is the number density and σ the

hard-sphere diameter) and �(t) is a rational function given by

�PY(t) = 1 + SPY
1 t + SPY

2 t2 + SPY
3 t3

1 + LPY
1 t

, (2)

where the coefficients SPY
1 , SPY

2 , SPY
3 and LPY

1 are well known analytical functions of the
packing fraction η, and the label PY denotes the PY results.

The RFA method [2, 16] is based on the assumption that a reasonable extension of the
Wertheim solution beyond the PY approximation consists of adopting the form depicted in
equation (1) but taking

�(t) = 1 + S1t + S2t2 + S3t3 + S4t4

1 + L1t + L2t2
(3)

where the (so far unknown) six coefficients S1, S2, S3, S4, L1 and L2 may be evaluated in an
algebraic form by imposing the following two requirements [18].

(i) The first integral moment of the total correlation function hHS(r) ≡ gHS(r) − 1,
i.e.

∫ ∞
0 rhHS(r) dr , must be well defined and non-zero.
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(ii) The compressibility factor ZHS = P/ρkBT ≡ 1 + 4ηgHS(σ
+) (where P is the pressure, kB

the Boltzmann constant and T the temperature) must be compatible with the isothermal
susceptibility and the radial distribution function, in the sense that on the one hand
χHS = (d(ρZHS)/dρ)−1 and simultaneously χHS = 24η(1 +

∫ ∞
0 r2hHS(r) dr).

Using the first requirement one finds that

L1 = 1

2

η + 12ηL2 + 2 − 24ηS4

2η + 1
, (4)

S1 = 3

2
η
−1 + 4L2 − 8S4

2η + 1
, (5)

S2 = −1

2

−η + 8ηL2 + 1 − 2L2 − 24ηS4

2η + 1
, (6)

S3 = 1

12

2η − η2 + 12η2 L2 − 12ηL2 − 1 − 72η2S4

(2η + 1) η
, (7)

and with the second one

L2 = −3(ZHS − 1)S4, (8)

S4 = 1 − η

36η (ZHS − 1/3)

[
1 −

[
1 +

ZHS − 1/3

ZHS − ZPY

(
χ

χPY
− 1

)]1/2
]

. (9)

Here, ZPY = 1+2η+3η2

(1−η)2 and χPY = (1−η)4

(1+2η)2 are the compressibility factor and isothermal
susceptibility arising in the PY theory. To close the problem one has to give an expression for
ZHS, so all the procedure is a function of this choice. For a given ZHS the radial distribution
function is then given by

gHS

( r

σ

)
= σ

12ηr

∞∑
n=1

ϕn

( r

σ
− n

)
θ

( r

σ
− n

)
, (10)

with θ( r
σ

− n) the Heaviside step function and

ϕn

( r

σ

)
= L−1

[−t [�(t)]−n
]
. (11)

Explicitly, using the residues theorem,

ϕn(x) = −
4∑

n=1

eti x
n∑

m=1

Amn(ti)

(n − m)!
xn−m, (12)

where

Amn(ti ) = lim
t→ti

1

(m − 1)!

(
d

dt

)m−1

(t − ti ) t [�(t)]−n , (13)

ti being the roots of 1 + S1t + S2t2 + S3t3 + S4t4 = 0. On the other hand, the static structure
factor S(k) is related to G(t), (which also explicitly depends on ZHS, cf equations (1), (3)–(9)),
by

S(k) = 1 − 24η Re
t2G(t) − 1

t3

∣∣∣∣
t=ik

. (14)

Therefore, the only required input to compute the structure factor within this method is
ZHS. In the next section we consider various choices for the hard-sphere compressibility factor
to illustrate the effect of considering different equations of state on the actual values of the
structure factor.
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Figure 1. The structure factor computed with the RFA method using the equations of state cited
in the text at η = 0.1. The curves labelled GH and PY are the results of using the Grundke and
Henderson and Percus–Yevick approximations, respectively.

2. The static structure factor S(k)

In order to proceed with the calculations we need an explicit expression for ZHS. A very
popular and relatively accurate equation of state for the hard-sphere fluid is the one due to
Carnahan and Starling [3] which yields

Z CS
HS = 1 + η + η2 − η3

(1 − η)3 . (15)

Other proposals in the literature include the Padé (4,3) of van Rensburg [4] and Sánchez [5]
(which reproduces the known eight virial coefficients and has a pole at the close-packing
fraction ηcp = 0.7405)

Z (4,3)

HS = 1 + 1.0244η + 1.1045η2 − 0.4611η3 − 0.7430η4

1 − 2.9756η + 3.0070η2 − 1.0978zη3
, (16)

the presumably most accurate up to now (with respect to simulation data) equation of state of
Malijevský and Veverka [6]

Z MV
HS = 1 + 1.0560η + 1.6539η2 + 0.3262η3

(1 + 0.0560η + 0.5979η2 + 0.3076η3)(1 − η)3
(17)

and our own recent ad hoc proposal [7], which was built to reproduce the first eight virial
coefficients arising from the Carnahan–Starling equation of state and to have a pole at the
random close-packing fraction. It reads

Z L H R
HS = 1 + 0.1535η − 0.4284η2 − 2.7981η3 − 0.317 42η4 − 0.1058η5

1 − 3.8464η + 4.9574η2 − 2.1639η3
. (18)

By substituting the various former expressions for ZHS in equations (4)–(9) and making
use of the resulting coefficients in equation (3), one obtains corresponding results for G(t)
from equation (1) and subsequently for S(k) from equation (14). It should be pointed out that
while Z CS

HS and Z MV
HS lead to physically meaningful structural properties for 0 � η � 1, in the

case of Z (4,3)
HS the method leads to a threshold packing fraction [2] (identified with the packing

fraction at which a glass transition in the hard-sphere fluid takes place) η
(4,3)

0 = 0.5604 beyond
which no meaningful fluid structure can be derived. The same applies to Z L H R

HS , but in this
instance the threshold packing fraction is ηL H R

0 = 0.5684.
In figures 1–4 we present the results for S(k) at a fixed packing fraction for the four different

compressibility factors and their comparison with those derived using the GH expression [13]
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Figure 2. The same as figure 1 for η = 0.3.
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Figure 3. The same as figure 1 for η = 0.5.

and the PY theory. The curves corresponding to equations (17) and (18) are practically
indistinguishable from those obtained from the CS equation, and they have been omitted
in all figures to avoid overcrowding. While at the lowest packing fraction of η = 0.1 there
is virtually no difference in the results, irrespective of the choice for ZHS or the use of the
GH formula, as η increases differences both in the positions and heights of the peaks become
manifest, and they are more important for the highest packing fraction of η = 0.56. Note
that both in figures 3 and 4 the height of the first peak exceeds 2.85 which, according to an
empirical criterion [14], indicates that we have gone beyond the fluid–solid transition and into
the metastable fluid regime. As discussed in [7], a comparison between the contact values
of the RDF stemming out of the different compressibility factors considered here and those
obtained through simulation [15] within this metastable regime shows very good agreement.
Also notice that, in the case of figure 4, the value taken for η is close to the one of η0 if Z L H R

HS

or Z (4,3)

HS are considered. Whether an empirical criterion to locate the glass transition based on
the value of the first peak of S(k) at such a packing fraction can be established, similar to the
one used for the fluid–solid transition, is worth investigating.

3. Concluding remarks

To our knowledge, there are no computer simulation results for the static structure factor of
a hard-sphere fluid in the metastable fluid regime. Therefore an assessment of the merits
and limitations of taking one or other compressibility factor on the basis of a comparison
with simulation data is precluded at this stage. Nevertheless, we will attempt to put some
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Figure 4. The same as figure 1 for η = 0.56. Note that, although not appreciated in the scale of
this figure, the GH approximation is (incorrectly) negative for small values of kσ at this packing
fraction.
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Figure 5. The reduced short-time collective diffusion coefficient as a function of kσ for η = 0.443.
The curves represent the RFA solutions for the aforementioned HS equations of state. The PY and
GH approximations are also included for comparison. The experimental data (exp1 and exp2) were
taken from [19] and [20], respectively.

perspective on the previous results by examining their performance in connection with the
diffusion coefficient of a colloidal dispersion. According to the theory of Verberg et al [1],
the short-time collective diffusion coefficient of a concentrated colloidal suspension DS(k, η)

may be expressed as

DS(k, η) = D0d(k)

gHS(σ +; η)S(k; η)
, (19)

where D0 is the Stokes–Einstein diffusion coefficient of an isolated Brownian particle,
d(k) = [1 − j0(kσ) + 2 j2(kσ)]−1 with jl(kσ) the spherical Bessel function of order l and
the notation gHS(σ

+; η) and S(k; η) indicates that the contact value gHS(σ
+) and the static

structure factor S(k) depend on the packing fraction η. In figure 5 we display the experimental
measurements [19, 20] related to this coefficient in suspensions of neutral PMMA spheres
stabilized with poly-(12-hydroxystearic acid) at a packing fraction of η = 0.494 together with
the predictions using the structure factors that follow from each ZHS. The experiments, geared
to determine the k-dependent diffusion coefficient from the dynamic structure factor, involve
the two-colour dynamic light scattering method; interestingly enough, in [19] they were able
to observe a glass transition at a packing fraction η � 0.56. One notices that the effect of
using any ZHS instead of the GH formula and the CS equation of state as done in the original
theoretical calculations [1] is hardly noticeable, except for the PY curve. To compute this
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curve we used the contact values gHS(σ
+; η) that follow from the virial route, and it is due to

such values that the ‘apparent’ improvement is achieved. Nevertheless, it is well known that
the PY compressibility factor underestimates the true value, and so the better agreement with
the experimental data in this instance is fortuitous.

In summary, in this work we have provided an analysis of the effect of using different
compressibility factors within the RFA method to compute the static structure factor of a hard-
sphere fluid. Clearly, being an integral moment, this effect is not very noticeable except
at high densities, and even there only minor differences show up. We were not able to
perform a comparison with computer simulation data but, in order to see whether these minor
differences could manifest themselves in a different context,an indirect comparison through the
short-time collective diffusion coefficient of a concentrated suspension of PMMA spheres was
performed. This comparison confirmed that the effect of using different compressibility factors
is negligible, and thus the discrepancy between theory and experiment cannot be ascribed to
a lack of accuracy in the equation of state used. Indirectly, therefore, our results give support
to the validity of the theory by Verberg et al [1] for the transport properties of concentrated
colloidal suspensions.

Finally, it is worth pointing out that the availability of analytical expressions for the static
structure factor, as derived with the use of the RFA method, could perhaps be profitably
exploited in connection with mode coupling theory [21] to predict the glass transition in
colloidal systems. We plan to conduct efforts along this direction in the near future.
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